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Solutions are obtained for the baroclinic instability problem for situations in 
which the static stability and mean shear vary geminately with height. The simple 
solution given by Eady is shown to be a special limiting case of a class of exact 
solutions for flows whose basic states have a vanishing interior potential vorticity 
gradient. The generalized solutions show that the temperature amplitude dis- 
tribution is particularly sensitive to vertical variations in static stability but 
that phases and other amplitudes are only slightly influenced by such variations. 
When the static stability and shear increase (decrease) with height an enhanced 
temperature maximum occurs a t  the upper (lower) surface in comparison with 
the standard Eady solution. 

The generalized solutions also help to explain the character of annulus 
waves and predict a short-wave cut-off that is the same as that given by 
Eady's theory provided that it is based on the vertically averaged gravitational 
frequency. 

1. Introduction 
The theory of baroclinic instability has mainly been developed for idealized 

mean currents that have a constant shear and static stability. This elementary 
configuration makes it possible for the problem to be solved analytically. The 
simplest such solution is that given by Eady (1949) in terms of hyperbolic 
functions. 

The purpose of this paper is to show that simple analytical solutions exist, 
also in the form of hyperbolic functions, when the static stability and shear are 
non-constant but have the same functional variation with height. Such distribu- 
tions maintain the vanishing interior potential vorticity gradient and the 
mathematical simplicity of the original Eady problem. The solutions allow us to  
examine the effects of variations in static stability and shear on the character 
of this particular set of baroclinic waves. 

This analysis was originally made to try to explain the baroclinic annulus 
wave discussed earlier by the author (Williams 1971). Although these annulus 
waves are very similar in many respects to the standard Eady wave, they do, 
however, display a quite different temperature amplitude distribution, having 
a maximum in the lower fluid and a minimum a t  the upper surface. Because 
annulus waves are so similar in many respects to the classical Eady wave, yet 
have a significant deviation, they suggest the existence of a wider class of solu- 
tions that have the Eady solution as a particular case. Such solutions were sought. 
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The generalized solutions support the hypothesis that the deviation of the 
annulus wave from the Eady wave is due to the vertical variation in the static 
stability. The solutions also have possible geophysical relevance, particularly 
for the ocean, a system in which the static stability undergoes large variation 
with height. 

2. The generalized Eady problem 
The formulation of the baroclinic instability problem and the derivation of the 

governing equations have been well documented; see, for example, McIntyre 
(1970) for an up-to-date discussion. The problem is outlined below to introduce 
the notation. 

We consider small amplitude inviscid adiabatic perturbations to a parallel 
flow u(y,  z )  in the x direction of a channel limited by boundaries a t  z = 0, H 
and y = 0,  L on which the normal velocities must vanish. The Cartesian co- 
ordinates (x, y, z )  are in a frame of reference rotating about the vertical z axis 
with angular velocity 4 f. We take .u?, and 4 to be eharacteristic values of the 
shear u, (a frequency) and of the gravitational (Brunt-Vaisda) frequency 
N(z)  = (/3gdT,/dz)J for a stably stratified Boussinesq fluid. The subscript e 
denotes, for reasons that will become apparent, the non-constancy of these 
frequencies with respect to z. 

For this particular baroclinic instability problem the following scaling is most 
appropriate : 

4 H / f  for the horizontal co-ordinates (x, y), a scaling suggested by 
Stone’s (1969) analysis, 

H for the vertical co-ordinate z, 

&If$ for thetimet, 

X H  for the horizontal velocities (u, v), 

fHR2 for the vertical velocity w, 
H2KX for the Boussinesq pressure p/p, 

H4.u?, for the Boussinesq buoyancy CT = - PgT. 

I n  the quasi-static quasi-geostrophic state the Rossby-Kibel number R = q/x 
(the reciprocal of the square root of the Richardson number) is small and the 
governing equations are those for the conservation of quasi-geostrophic potential 
vorticity q and for the advection of buoyancy cr. 

When these equations are linearized to describe normal-mode perturbations 
of the basic state they can be written on transposing the variables to  non- 
dimensional form as 

B + [!z,$/(u - c)l = 0, 

y^ = ( F $ A  + $gv - a=& 

q g  = - (Fuz), - uyg, 

(2) 

(3) 

(4) 

8 = i ~ F [ u , $ - ( ~ - c ) $ ~ ] ,  ( 5 )  
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where 8, $ and 8 are the complex amplitude functions for a perturbation of the 
form $ = Re $(y, x )  eia@-Ct). The non-dimensional wavenumber LX is a real vari- 
able, whereas the non-dimensional phase velocity c = cr+ ici can be complex. 
The stream function $ for the dimensionless horizontal velocities is also the 
quasi-geostrophic pressure, whereas its gradient $z, by virtue of the hydrostatic 
relation c = - $,, describes the quasi-geostrophic temperature. The parameter 
F(z)  = M:/Nz(x) is the basic baroclinic instability parameter, sometimes called 
the rotational Froude number. 

For the problem in hand u is assumed to be independent of the lateral co- 
ordinate y so that qy is independent of y and solutions of the form $(y, x )  = $ ( x )  
x sinmy exist to satisfy the lateral boundary conditions. Then equation ( 2 )  for 

$ ( x )  becomes, for any F(z)  and u ( z ) ,  

( W A S  - [(Fu,),/(u - c) + (a2 + m2)1 $ = 0. (6) 

The standard Eady approximation eliminates the singular term (u - c)-l by 
assuming that F(z)  and uz are both constant. This, however, is a redundant 
idealization for it is only necessary to assume that the product Fu, is constant in 
order to make qv = 0 and eliminate the singular term. We shall make this latter 
assumption and refer to the subsequent problem for the sake of definition as a 
generalized Eady problem. 

To satisfy the generalized constraint the z variation of the basic s t a b  is taken 
to be of the form 

N ( z )  = Jt;;n,(z), U Z ( 4  = 93,(4/Sp. ,  (7) 

such that n:(x) = s&).t Thus the ensuing analysis is valid only for flows in 
which the mean shear and the static stability have parallel distributions in x .  
The constants J& and are the characteristic frequencies for a uniform basic 
state, denoted as 8 = 0. It no longer suffioes in the case of a x-dependent basic 
state to base the characteristic values on single representative values of the 
parameters. Instead it is necessary to introduce characteristic values based on 
integrals of the basic state. Hindsight indicates that the appropriate integral 
scaling factor is the mean value of n,(z), i.e. 

z, = /:n,(z) dx. 

Thus the characteristic values are taken to be such that 

*/V-:/Jv”; = q/y0 = Ti“,$ 

r$,/12.t(4i2 = [4k2/5i:i $, (8 )  

Equation ( 6 )  for the conservation of potential vorticity in the fluid interior 
can then be written as 

f Despite this equivalence, both functions are retained to facilitate physical identifica- 

1 This introduces integral factors ?i,,l,?i;1, ?ii, T$ ?i: and Ti: into the scales of (1 ) .  
tion. 

Alternatively, some simplification could be realized by normalizing the function n,(z). 
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where 4k2 = a2+m2. The variation in the shear enters the problem through 
the boundary condition, t2 = 0, i.e. 

%$-(u-d$g = 0, (9) 

that describes the temperature advection on the horizontal boundaries x = 0, 1. 

3. Approximate and exact solutions 

Then (8) can be transformed into the normalized Sturm-Liouville equation 
To solve (8) a new independent variable 7 is introduced such that E:dy = n:(z)dz .  

$,r = E(7) $9 (10) 

where E(7) = 4k2%:n;2(z). This equation has solutions expressible in terms of 
the functions of classical physics for various idealized forms of E(7). However, to 
find a class of simple exact solutions to this problem we use only the results of 
WKB theory and choose E(7)  profiles such that the WKB error term vanishes. 
For E(7)  > 0 approximate solutions to (10) are given by the WKB method in 
the form 

(11) 

where there is an associated error given by the expression 

I$ = E-f{A, exp [I E* dy]  + A ,  exp [ - J” E: d r ] } ,  

*E-f ( E-f)r7.  (12) 

Although these equations would allow approximate solutions to be obtained 
for any n,(z) consistent with the WKB method we are mainly interested in using 
(1 1) and (12) to reveal the most general form of simple exact solutions of this type. 
The exact solutions provide a simpler illustration of the effects of the z variation 
of the basic state. The more complex eigenvalue problem for the arbitrary n,(z) 
case is discussed in the appendix. 

To obtain the most general exact solutions, (12) is solved for the case of zero 
crror. The only forms of E(7) that satisfy this condition are the polynomials 
(a, + a,7)-*, where a, and u2 are arbitrary constants. The associated solutions are 

(%+%Y)exP[ *?/a,(%+a27)1. 113) 

Thus simple exact solutions for the generalized Eady problem exist when nf(z) 
takes the form (a,+a,z)-Q, where a3 and a, are arbitrary constants. (This is 
obtained on transforming to the original variables.) Therefore we assume that 
nf(z) = (1 - ez)-g so as to obtain the most general exact hyperbolic solutions 
to the modified Eady problem. The standard Eady problem corresponds to the 
case e = 0. The significance of the subscript e is now apparent. 

4. Solution of the generalized exact Eady problem 
The generalized Eady problem can be defined for the exact case as being the 

study of the stability of a mean flow which has a static-stability-shear functional 
variation nt(z) = s, (x) = (1 - ex)-* and a mean current given by (upon integra- 
ting) 

(14) u ( z )  = .spYp-:[( 1 - ez)-f - 1]/4€, 
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FIGURE 1. Distribution of ( a )  the static-stability-shear function m i ( z )  = sE(z) = (1 - EZ)-* 
and ( b )  thedimensional meancurrent a(z) Y,, equation (14) withY, = 1, with the intercepts 
indicating the steering level z8, equation (26), for representative values of E as indicated. 

where u(0) = 0 is imposed. The forms of n,2(x) and u ( z )  are shown in figure 1 
for cases of increasing ( E  > 0 )  and decreasing (e < 0) static stability and shear. The 
selected values of 8 give static stabilities that increase or decrease by a factor of 
up to 10.t Clearly the functional forms represent simple but realistic distributions 
(s,(x) has an almost linear behaviour in z for moderate e values). 

The solution of (8) for this basic flow is, as suggested by (11) and (13), 

where K = 21% and 

n,*(z) = n,(z) dz = [I - (1 - ex)+]]/&, so” 
so that nz(1-0) = Z,. The standard Eady solution for the flow u = x occurs in 
the limit E + 0. It is important t o  note that E is not necessarily small but lies in 
the range -a < E < 1. 

t The negative E value corresponding to a positive E~ value is given by -el/( 1 -el). 
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The eigenvalue problem 

Application of the boundary condition, equation (9), to the expression in (15) 
yields a secular equation for the complex wave speed c .  The equation is most 
conveniently written as 

where 
Ac"Z+Bc"+C = 0, (16) 

A =aKz+(a- I ) zC ,  B =  -K2-2 (a - l )C ,  C = K c o t h K - 1 ,  

E = q c / q  %, and a = ( 1  - e)*.t The algebraic identity E, = (1 -a) /& has 
been used to simplify (16) to this simple algebraic form. The discriminant 

6 = (4AC-2394 

6 = 4k[(k  - tanhk) (coth k - k)]4.  

of this equation agreeably has the familiar, €-independent, form 

(17 )  

Amplifying unstable waves occur when the imaginary part of c is positive and 
non-zero. This occurs when k < k,,, the critical neutral short-wave cut-off 
wavenumber being given by k, = cothk, from (17 ) ,  i.e. k N  = 1.1997. That this 
condition should be independent of e and thus the same as in Eady's theory is 
due to the particular choice of 4 H / f  as the length scale for a and to the choice of 
E, as the integral scale factor. Thus the dimensional short-wave cut-off is the same 
as Eady's provided that it is based on the vertically averaged value of the gravita- 
tional frequency N ( z ) .  

The coeEcient A can also be written in the form 

A = 3C[1+ y ( K )  aE,]/E,, (18) 

where y ( K )  = K2/3C - 1 is a weak dispersion parameter. Then the amplification 
velocity can be written as 

ci = cio (1  +y)l( l  + y a a  (19) 
where cio is the value of ci in the e = 0 (Eady) case. The wavenumber kM for the 
maximum value of the growth rate, 2kci, has the value kMo = 0.8031 in the B = 0 
case. The associated value of y(K) is y(kMo) = 0.1606. In  the e + 0 case the value 
of kJ,, also depends on e but this dependency is relatively weak, so that to a good 
approximation kM N klwO and y(kM) N y(kMo).  Use of these values in (19) pro- 
vides an accurate value for c i (kM),  as does the further approximated form of 
(19) ci(klT,,) N cio(kMo). See table 1. This simple result is due to the choice of 
113 as the scale factor €or q/q. 

The real part c, of the phase velocity c is given by 

when k < E N .  (Note that 90%,/aq = u (1.0)). For small values of k, y + 0 in 
(20) and the resulting expression is algebraically equal to  the vertically averaged 
mean current 1 

u = 1 udz. 
0 

f Although ?Z6/ge is equal t o  a, these relations are purely algebraic. 
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FIGURE 2. Variation with wavenumber 1% of (a) the normalized wave speed c@, and (b)  the 
normalized growth rate 2kc,, for values of c as indicated. 

E 

0.75 
0.50 
0.25 
0 

- 0.5 
- 2.0 
- 5.0 

28 

0.593 
0-548 
0.520 
0.500 
0.472 
0.425 
0.383 

k M  

0.806 
0,804 
0.804 
0.803 
0.804 
0.806 
0.810 

C A k M W P E  

0.871 
0.677 
0-571 
0.500 
0.409 
0.278 
0.179 

TABLE 1 

. u ( Z S ) Y ,  

0.866 
0.675 
0-570 
0.500 
0.409 
0.278 
0.180 

S Y ,  

0.825 
0 4 6 1  
0.565 
0.500 
0.413 
0.285 
0.186 

C A k M )  

0.194 
0.193 
0.193 
0.193 
0.193 
0.193 
0.194 
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Thus -i2 (see table 1)  is a good approximation to c, for small k. This result is also 
suggested by the divergence equation 

(21) 

c = .$I$. (22) 

h 

fh2 = - iaKZ(u - c )  ~, 
which when integrated leads to the integral equation for c: 

-- 

From (22) it is clear that when ci < c, and variations in I,$ are small the result 

The approximation c, 21 U is not particularly accurate when k is not small. 
To obtain a good approximation when k = kM requires that the $ variation in 
(22) be allowed for. When this is done it is found that a good empirical approxima- 
tion to  c,(kM) of the form of (22) is given by the weighted mean velocity El, 
where 

- 
c, N ufollows. 

(23) 
- u1 = u( 1 + n$)/l+ ?$. 

Another expression which provides a good approximation to c,(k,,) and which 
can also be considered as an approximation to (23) is 

Uz = u(l+ni)/(l+E$). (24) 

Ti,  = q Y , l [ E :  - I]/*€. 

Both Ti1 and U 2  seem to be equally good approxiinations to c,(kM). The form Uz, 
however, is particularly valuable as it reduces algebraically to the expression 

(25) 

Comparing (14) and (25) suggests that U2 is equal to u(z,), where z, is the height a t  
which N ( z )  is equal to its mean value, i.e. where 

n,(z,) = E,. (26) 

Thus u(zJ provides an accurate approximation to the wave speed c,(kM) and 
so z,, as defined by (26), is the so-called steering level of the wave.? 

Values of z, = [ 1 - E;*]/e, kM, c,(kA,) and ci(kM) together with their approximate 
forms are listed in table I .  The growth rate and wave speed are shown as func- 
tions of k and F in figure 2. It is apparent from figure 2 that c, is only weakly 
dependent on k and then only for moderate e values. The growth rate 2kci is 
very weakly dependent on F and requires extreme E values to  reveal the devia- 
tions. 

Character of the solution 

For unstable waves, the pressure and temperature can be written as 

(27) 

The most influential modifying factors in this solution are the n j ( z )  and nf(z) 
terms that occur in I,$2. These factors are strongly variable functions of ez and 

t For waves with k small and c, 2: 5 the steering level is given by ni(z,) = n$. 
- 
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greatly influence the amplitude of $$, which thus tends to reflect the variations 
in the static stability. These factors, however, do not affect the phase of g3. 
The phase and amplitude of @ are only weakly influenced by the nt(z) factor, so 
that 1% is similar to that of the classical Eady solution. 

Figure 3 illustrates the phase and amplitude distributions for various values of 
6 .  The amplitudes of all variables are no longer symmetrical about z = Q when 
e + 0, but tend to have maximum values in z > 4 for e > 0 and in x < 4 for e < 0. 
The largest effects occur in the amplitudes of gZ and a,, which are considerably 
enhanced a t  z = 1 (e > 0) and a t  x = 0 (e < 0). Moderate variations with E: are 
evident in the phases of 63 and 8, but the phases of 1% and $., are only weakly 
dependent one. 

5. Baroclinic annulus waves 
The solutions obtained above appear to be particularly relevant to the labora- 

tory experiments on baroclinic instability.? In  the annulus the static stability 
and shear decrease with height and thus have distributions corresponding to 
e < 0. Horizontal averages, denoted by ( ) x u ,  of the finite amplitude three- 
dimensional u., and T, fields obtained in a numerical solution for a baroclinic 
annulus wave (Williams 1971) are plotted in figure 4. The curves indicate that 
@u and !@ have almost parallel$ distributions above the region influenced by the 
Ekman layer. Thus the generalized Eady approximation Fu, constant is valid for 
this flow. Both distributions seem to approach s,(z) most satisfactorily when 
B N  -4 .  

The theoretical solution for e = - 4 (similar to the e = - 5 one in figure 3) 
does indeed resemble the numerical solution in the region above the Ekman 
layer in the central y = Q plane of the annulus, see figure 9 of Williams (1971). 
The steering level in this plane occurs at z, = 0-37 in the numerical solution and 
this is close to the value 0.39 for the e = -4  solution. For e = -4  the integral 
factor %, is equal to 0-53, so that the dimensional cut-off wavenumber would 
appear to be about twice as large as that predicted by Eady's theory if it were 
based on the maximum value of N ( z )  rather than on the integral mean value of 
N(z ) .  Such seems to be the situation in the multiple laboratory experiments 
(P. Mason, personal communication). These results suggest that some annulus 
waves are a form of generalized Eady wave with a character comparable to t'he 
e = - 4  solution. Although it is unlikely that the actual annulus waves could 
correspond identically t o  these simple functions or that they possess a form 
equivalent to a unique E:, the above identification of the importance of the nf(z) 
variations does provide a step towards a more complete theory for annulus 
convection. An alternative approach is to use the more complex results given in 
the appendix for whatever actual static-stability-shear distributions are 
observed or postulated for the system. 

t A system wheref is independent of y and for whose flows precise data exist. 
$ For the corresponding axisymmetrio solution this parallelism is not as strong. This 

suggests that finite amplitude waves act so as to make ql/ + O  by bringing u, and dT,ldz into 
line. 
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FIGURE 3. ( a )  Phase distributions for the generalized Eady wave, equations (23) and (24), 
at kM for representative values of E as indicated and. The reference case E = 0 is the 

standard Eady wave. Phases are measured relative to that of @z a t  z = 0, which is in- 
dependent of E ,  in units of n. For clarity, distributions for E > 0 are shown for the right half 
of the wave and for E < 0 for the left half only. ( b )  Amplitude distributions for the general- 
ized Eady wave at kM for representative values of E as indicated. The reference case E = 0 
is the standard Eady wave. 65 = k &@/a is the norinalizedvertical velocity and fiZ = kt&Tii/cz 

is the normalized divergence. @=Ez$  is the normalized stream function and @==Fiz@ is 
the normalized temperature. 
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FIGURE 4. Vertical profiles of the horizontally averaged values of the u, and T, fields of the 
numerical annulus wave solution of Williams (1971) and the theoretical curve s&) for 
e = -4.  The annulus profiles are arbitrarily scaled and are of dimensional quantities 
Cz = 3Tiy and pz = Fp.jAT of the numerical solution. 

A complete theory for annulus waves requires a synthesis of the effects of the 
major processes active in the system. Clearly the predominant mechanisms are 
the baroclinic instability mechanism of the type discussed above and the 
boundary-layer dynamics of the basic state. The important modifying processes 
include the Ekman-layer dissipation of the wave' and the nonlinearities of the 
finite amplitude wave. 

6. Conclusion 
Eady-type solutions have been found for flows with height-varying static 

stability and shear. The solutions are exact when this variation is of the form 
(1 -a)-%, with the classical Eady solution corresponding to the case E = 0. 
Comparison between the theory and a numerical solution for annulus waves 
indicates that such variations are physically significant and that annulus waves 
are generalized Eady waves comparable to the E = - 4 solutions. This conclusion 
is supported by the asymptotic value of the instability criterion obtained in the 
laboratory experiments. This value is comparable to the E = - 4 theoretical value 
when it is based on the vertically averaged gravitational frequency. 

I should like to thank Dr Brian Hoskins for his valuable comments on this 
work. 
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Appendix. General WKB solutions 
When the static stability and shear do not have the simple functional form 

discussed in $4, the general WKB solution ( 1  1)  can be used to solve the eigenvalue 
problem. The results, given below, lack the algebraic relations and reducibility 
of the generalized exact solutions and are therefore more complex and their 
affinity to the Eady solution less obvious. However, the solutions have a physical 
and practical value, being easy to evaluate numerically. 

The general solution for $ can be written as 

- { Y o ~ ~ l ~ , ( 0 ) n , ( O ) + ~ n ~ ( O ) [ ~ - u ( O ) ] ) ~ i n h  

when it is based on the values of the basic functions a t  x = 0 and where the gradi- 
ent function nL(z) = dn,(z) /dz  has been introduced. 

The secular equation Ac2 + Bc + C = 0 has the coefficients 

where the arithmetic and geometric means of values a t  the two boundaries 
have been written as, for example, i ia = ${a( 1) + u(0))  and i i g  = ( ~ ( 0 )  u( I)}& 
respectively and the difference as, for example, Au = u( 1)  - u(0). With this 
notation the real and imaginary parts of the wave velocity c can be written as 

Some of the quantities occurring in (A2)-(A6) can be interpreted as being 
boundary values of local parameters, e.g. n~(z)/s~(z) is a local relative Richardson 
number and an inverse measure of the basic available potential energy; both of 
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these quantities are independent ofz in the standard Eady problem. The identity 
n,"(x) = s,(x) can be used in the above equations to provide some algebraic 
reduction. 

The terms in (A2)-(A6) that give the Eady solution have been marked with 
a dagger. Various approximations or specializations to these equations are pos- 
sible, including the reduction to the exact case of 0 4. 
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